Home
Class 12
MATHS
Let A=[[1 ,0 ,0], [0 ,1 ,1] ,[0,-2, 4]],...

Let `A=[[1 ,0 ,0], [0 ,1 ,1] ,[0,-2, 4]],I=[[1 ,0 ,0 ],[0, 1, 0], [0, 0, 1]]` and `A^(-1)=[1/6(A^2+c A+d I)]dot` Then value of c and d are

A

`(6,11)`

B

`(6, -11)`

C

`(-6 , 11)`

D

`(-6, -11)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[9,-8,7],[-6,5,-4],[3,-2,1]] and B=[[1,0,0],[0,1,0],[0,0,1]] then find AB and BA.

Find A if [[1,0,-1],[-2,-1,4],[-1,0,2]]A = [[-1,-2,2],[3,4,-3],[3,4,-1]]

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is...a) A^T b) A^2 c) A d) I

If A+I=[[1,2,0],[5,4,2],[0,7,-3]] find the product (A+I)(A-I)

If A=[(a,0),(0,(1)/(b))] , then A^(-1) =

Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for ..a) k = 1 b) k = − 1 c) k = 0 d) All real k

If A=[[1,2,-3],[5,0,2],[1,-1,1]],B=[[3,-1,2],[4,2,5],[2,0,3]] and C=[[4,1,2],[0,3,2],[0,-2,3]] verify that A(B+C)=AB+AC