Home
Class 12
MATHS
If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1...

If `A=[(1,4,4),(4,1,4),(4,4,1)]` and `A^(-1)` exists and not equal to zero,
then `(A^(2)-8A)A^(-1)`=

A

(a) `[(7,4,4),(4,7,4),(4,4,7)]`

B

(b) `[(9,4,4),(4,4,9),(9,4,4)]`

C

(c) `[(-7,4,4),(4,-7,4),(4,4,-7)]`

D

(d) `[(0,9,4),(4,0,9),(9,4,0)]`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal to 0, then (A^(2)-4A)A^(-1)=

If A=[(5,4),(3,2)] then A^(-1) is equal to

If A=[{:(3,2),(1,4):}] , then what is A (adj A) equal to ?

if A=[[1,2,3],[1,4,9],[1,8,27]] , then |adj A| is equal to

int_(-1)^(1)x^(17)cos^(4) x dx is equal to

If A[(1,2,2),(-2,-1,-1),(1,-4,-4)] , then the sum of the elements of A^(-1) is...a)0 b)1 c)-1 d) Cannot be found

If the adjoint of a 3x3 matrix P is [(1,4,4),(2,1,7),(1,1,3)] , then the possible value/s of the determinant of P is/are (A) +-2 (B) +-1 (C) +-4 (D) +-3

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to