Home
Class 12
MATHS
If bara=-3overset(^)i+7overset(^)j+5over...

If `bara=-3overset(^)i+7overset(^)j+5overset(^)k,barb=-3overset(^)i+7overset(^)j-3overset(^)k and c=7overset(^)i-5overset(^)j-3overset(^)k` are the three coterminus edges of a parallelopiped, then its volume is

A

108

B

210

C

272

D

308

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If bara=3overset(^)i-2overset(^)j+2overset(^)k,barb=6overset(^)i+4overset(^)j-2overset(^)k and barc=3overset(^)i-2overset(^)j-4overset(^)k, then bara(barbxxbarc) is

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be

If bara=2overset(^)i-3overset(^)j+5overset(^)k,barb=3overset(^)i-4overset(^)j+5overset(^)k and barc=5overset(^)i-3overset(^)j-2overset(^)k , then the volume of the parallelopiped with co-terminus edges bara+barb,barb+barc,barc+bara is

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If bara=overset(^)i+overset(^)j-2overset(^)k,barb=2overset(^)i-overset(^)j+overset(^)k and barc =3overset(^)i+overset(^)k and barc=mbara+nbarb then m+n

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If the vectors 2overset(^)i-3overset(^)j,overset(^)i+overset(^)j-overset(^)k and 3overset(^)i-overset(^)k form three concurrent edges of a parallelopiped, then the volume of parallelopiped is