Home
Class 12
MATHS
If the vectors -overset(^)i+3overset(^)j...

If the vectors `-overset(^)i+3overset(^)j+2overset(^)k,-4overset(^)i+2overset(^)j-2overset(^)kand 5overset(^)i+lambdaoverset(^)j+muoverset(^)k` are collinear then: a)`lambda=5,mu=10` b)`lambda=2,mu=-1` c)`lambda=-5,mu=10` d)`lambda=5,mu=-10`

A

`lambda=5,mu=10`

B

`lambda=2,mu=-1`

C

`lambda=-5,mu=10`

D

`lambda=5,mu=-10`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

The vectors overset(^)i+2overset(^)j+3overset(^)k,lambdaoverset(^)i+4overset(^)j+7overset(^)k and -3overset(^)i-2overset(^)j-5overset(^)k are collinear, if lambda equals

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If the vectors lambdaoverset(^)i+overset(^)j+2overset(^)k,overset(^)i+lambdaoverset(^)j-overset(^)k and 2overset(^)i-overset(^)j+lambdaoverset(^)k are coplanar if: a) lambda=-2 b) lambda=-0 c) lambda=2 d) lambda=-1

If the vectors 2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k are coplanar, then the value of lambda is

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors overset(^)i+3overset(^)j-2overset(^)k,2overset(^)i-overset(^)j+4k and 3overset(^)i+2overset(^)j+xoverset(^)k are coplanar, then the value of x is

If the vectors overset(^)i+2overset(^)k,overset(^)j+overset(^)k and lambda overset(^)i+mu overset(^)j collinear, then