Home
Class 12
MATHS
Given vectors bara,barb,barc such that b...

Given vectors `bara,barb,barc` such that `bara.(barbxxbarc)=lambda!=0` the value of `(barbxxbarc).(bara+barb+barc)//lambda` is

A

3

B

1

C

`-3lambda`

D

`3/lambda`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (bara-barb).[(barb-barc)xx(barc-bara)] is

The vectors bara,barb and bara+barb are

For any vectors bara,barb,barc correct statement is

(bara+barb).(barb+barc)xx(bara+barb+barc)=

Let bara=-overset(^)i-overset(^)k,barb=-overset(^)i+overset(^)j and barc =overset(^)i+2overset(^)j+3overset(^)k be three given vectors. If barr is a vector such that barrxxbarb=barcxxbarb and barr. bara=0 , then the value of barr.barb is

bara.[barb+barc)xx(bara+barb+barc)] is equal to

If bara,barb,barc are three non-coplanar vectors and barp,barq,barr are defined by the relations barp=(barbxxbarc)/([bara" "barb" "barc]),barq=(barcxxbara)/([bara" "barb" "barc]),barr=(baraxxbarb)/([bara" "barb" "barc]) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr=

Given three arbitary vectors bara,barb,barc , then vectors baralpha=5bara+6barb+7barc,beta=7bara-8barb+9barc,bary=3bara+20barb+5barc are: a)Collinear b)Coplanar c)Non-coplanar d)None of these

If bara,barb,barc are non-coplaner vectors, then (bara.barbxxbarc)/(barcxxbara.barb)+(barb.baraxxbarc)/(barc.baraxxbarb)=

If bara,barb,barc are three vectors, then [bara, barb, barc] is not equal to