Home
Class 12
MATHS
Let G be the centroid of a triangle ABC ...

Let `G` be the centroid of a triangle ABC and O be any other point,
then `bar(OA)+bar(OB)+bar(OC)` is equal to

A

(a) `bar0`

B

(b) `bar(OG)`

C

(c) `3bar(OG)`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

[bar(a)" "bar(b)" "bar(a)xxbarb] is equal to

Let D be the middle point of the side BC of a triangle ABC. If the triangle ADC is equilateral, then a^(2) : b^(2) : c^(2) is equal to

If G and Gprime are the centroids of the triangle ABC and AprimeBprimeCprime, then the value of bar(A Aprime)+bar(B Bprime)+bar(C Cprime) equals...a) bar(GG) ' b) 2bar(GG) ' c) 3bar(GG) ' d) 2/3bar(GG) '

If S is the circumcentre, O is the orthocentre of DeltaABC, then bar(SA) + bar(SB)+bar(SC) equals

If D is the mid -point of side AB of DeltaABC , then bar(AB) + bar(BC) + bar(AC) =

The points A(bar(a)),B(bar(b)),C(bar(c)) will be collinear if