Home
Class 12
MATHS
Let barA=overset(^)i+overset(^)j+overset...

Let `barA=overset(^)i+overset(^)j+overset(^)k,barB=overset(^)i,barC=C_1overset(^)i+C_2overset(^)j+C_3overset(^)k` if `C_2=-1 and C_3=1`, then make three vectors coplanar

A

`C_1=0`

B

`C_1=1`

C

`C_1=2`

D

No value of `C_1` can be found

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to

If bara=overset(^)i+overset(^)j-2overset(^)k,barb=2overset(^)i-overset(^)j+overset(^)k and barc =3overset(^)i+overset(^)k and barc=mbara+nbarb then m+n

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be

Let bara=-overset(^)i-overset(^)k,barb=-overset(^)i+overset(^)j and barc =overset(^)i+2overset(^)j+3overset(^)k be three given vectors. If barr is a vector such that barrxxbarb=barcxxbarb and barr. bara=0 , then the value of barr.barb is

If bara=2overset(^)i-3overset(^)j+5overset(^)k,barb=3overset(^)i-4overset(^)j+5overset(^)k and barc=5overset(^)i-3overset(^)j-2overset(^)k , then the volume of the parallelopiped with co-terminus edges bara+barb,barb+barc,barc+bara is

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to