Home
Class 12
MATHS
If the vectors lambdaoverset(^)i+overset...

If the vectors `lambdaoverset(^)i+overset(^)j+2overset(^)k,overset(^)i+lambdaoverset(^)j-overset(^)k and 2overset(^)i-overset(^)j+lambdaoverset(^)k` are coplanar if: a)`lambda=-2` b)`lambda=-0` c)`lambda=2` d)`lambda=-1`

A

`lambda=-2`

B

`lambda=0`

C

`lambda=2`

D

`lambda=1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

If the vectors 2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k are coplanar, then the value of lambda is

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

The vectors overset(^)i+2overset(^)j+3overset(^)k,lambdaoverset(^)i+4overset(^)j+7overset(^)k and -3overset(^)i-2overset(^)j-5overset(^)k are collinear, if lambda equals

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

The number of distinct real value of lambda , for which the vector -lambda^2overset(^)i+overset(^)j+overset(^)k,overset(^)i-lambda^2overset(^)j+overset(^)k and overset(^)i+overset(^)j-lambda^2overset(^)k are coplanar, is: a) Zero b) One c) Two d) Three

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If the vectors -overset(^)i+3overset(^)j+2overset(^)k,-4overset(^)i+2overset(^)j-2overset(^)kand 5overset(^)i+lambdaoverset(^)j+muoverset(^)k are collinear then: a) lambda=5,mu=10 b) lambda=2,mu=-1 c) lambda=-5,mu=10 d) lambda=5,mu=-10