Home
Class 12
MATHS
If the vectors 2overset(^)i+2overset(^)j...

If the vectors `2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k` are coplanar, then the value of `lambda` is

A

`-10`

B

1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

If the vectors aoverset(^)i+overset(^)j+overset(^)k,overset(^)i+boverset(^)j+overset(^)k and overset(^)i+overset(^)j+coverset(^)k are coplanar (a ne b ne c ne 1) , then the value of abc-(a+b+c)=

If the vectors aoverset(^)i+overset(^)j+overset(^)k,overset(^)i+boverset(^)j+overset(^)k and overset(^)i+overset(^)j+coverset(^)k (a ne b ne c ne1) are coplanar, then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c

If the vectors lambdaoverset(^)i+overset(^)j+2overset(^)k,overset(^)i+lambdaoverset(^)j-overset(^)k and 2overset(^)i-overset(^)j+lambdaoverset(^)k are coplanar if: a) lambda=-2 b) lambda=-0 c) lambda=2 d) lambda=-1

If the vectors overset(^)i+3overset(^)j-2overset(^)k,2overset(^)i-overset(^)j+4k and 3overset(^)i+2overset(^)j+xoverset(^)k are coplanar, then the value of x is

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be