Home
Class 12
MATHS
The number of distinct real value of lam...

The number of distinct real value of `lambda`, for which the vector `-lambda^2overset(^)i+overset(^)j+overset(^)k,overset(^)i-lambda^2overset(^)j+overset(^)k and overset(^)i+overset(^)j-lambda^2overset(^)k` are coplanar, is: a) Zero b) One c) Two d) Three

A

Zero

B

One

C

Two

D

Three

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

If the vectors lambdaoverset(^)i+overset(^)j+2overset(^)k,overset(^)i+lambdaoverset(^)j-overset(^)k and 2overset(^)i-overset(^)j+lambdaoverset(^)k are coplanar if: a) lambda=-2 b) lambda=-0 c) lambda=2 d) lambda=-1

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

The vectors overset(^)i+2overset(^)j+3overset(^)k,lambdaoverset(^)i+4overset(^)j+7overset(^)k and -3overset(^)i-2overset(^)j-5overset(^)k are collinear, if lambda equals

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If the vectors 2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k are coplanar, then the value of lambda is

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if