Home
Class 12
MATHS
Given three arbitary vectors bara,barb,b...

Given three arbitary vectors `bara,barb,barc`, then vectors `baralpha=5bara+6barb+7barc,beta=7bara-8barb+9barc,bary=3bara+20barb+5barc` are: a)Collinear b)Coplanar c)Non-coplanar d)None of these

A

collinear

B

Coplanar

C

Non-coplanar

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For any vectors bara,barb,barc correct statement is

If bara,barb,barc are three coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

lf bara,barb,barc are coplanar unit vectors, then [2bara-barb,2barb-barc,2barc-bara]=

(bara+barb).(barb+barc)xx(bara+barb+barc)=

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara,barb,barc are three vectors, then [bara, barb, barc] is not equal to

If bara,barb,barc are non-zero, non collinear vectors, then the vectors bara-barb+barc,4bara-7barb-barc and 3bara+6barb+6barc are

For any three vectors bara,barb and barc,(bara-barb) .[(barb+barc)xx(barc+bara)] is equal to:

If bara , barb , barc are three vectors,then [bara barb barc] is not equal to

If bara,barb,barc are non-coplaner vectors, then (bara.barbxxbarc)/(barcxxbara.barb)+(barb.baraxxbarc)/(barc.baraxxbarb)=