Home
Class 12
MATHS
If bara,barb and barc are non-coplanar, ...

If `bara,barb and barc` are non-coplanar, then the value of `bara.{(barbxxbarc)/(3barb.(barcxxbara))}-barb.{(barcxxbara)/(2barc(baraxxbarb))}` is a)`-1/2` b)`-1/3` c)`-1/6` d)`1/6`

A

`(-1)/(2)`

B

`(-1)/(3)`

C

`(-1)/(6)`

D

`1/6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara,barb,barc are non-coplaner vectors, then (bara.barbxxbarc)/(barcxxbara.barb)+(barb.baraxxbarc)/(barc.baraxxbarb)=

The value of (bara-barb).[(barb-barc)xx(barc-bara)] is

If bara,barb and barc are three non-coplanar vectors, then : (bara + barb + barc) · [(bara + barb) xx (bara + barc)] =

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bara,barb,barc are any three coplanar unit vectors then

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara,barb,barc are non-zero, non collinear vectors, then the vectors bara-barb+barc,4bara-7barb-barc and 3bara+6barb+6barc are

lf bara,barb,barc are coplanar unit vectors, then [2bara-barb,2barb-barc,2barc-bara]=

If bara,barb,barc are three coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara,barb,barc are three non-coplanar vectors and barp,barq,barr are defined by the relations barp=(barbxxbarc)/([bara" "barb" "barc]),barq=(barcxxbara)/([bara" "barb" "barc]),barr=(baraxxbarb)/([bara" "barb" "barc]) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr=