Home
Class 12
MATHS
(bara+barb).(barb+barc)xx(bara+barb+barc...

`(bara+barb).(barb+barc)xx(bara+barb+barc)=`

A

`-[bara" "barb" "barc]`

B

`[bara" "barb" "barc]`

C

0

D

`2[bara" "barb" "barc]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (bara-barb).[(barb-barc)xx(barc-bara)] is

For any three vectors bara,barb and barc,(bara-barb) .[(barb+barc)xx(barc+bara)] is equal to:

If bara=(1)/(sqrt10)(3overset(^)i+overset(^)k),barb=1/7(2overset(^)i+3overset(^)j-6overset(^)k) , then the value of (2bara-barb).{(baraxxbarb)xx(bara+2barb)} is

bara.[barb+barc)xx(bara+barb+barc)] is equal to

If barp=(barbxxbarc)/(bara" "barb" "barc),barq=(barcxxbara)/(bara" "barb" "barc),barr=(baraxxbarb)/(bara" "barb" "barc) , where bara,barb,barc are three non-coplanar vectors, then the value of (bara+barb+barc).(barp+barq+barr) is given by

bara.(baraxxbarb)=

If bara,barb and barc are three non-coplanar vectors, then : (bara + barb + barc) · [(bara + barb) xx (bara + barc)] =

If bara,barb,barc are non-coplaner vectors, then (bara.barbxxbarc)/(barcxxbara.barb)+(barb.baraxxbarc)/(barc.baraxxbarb)=

If barx.bara=0,barx.barb=0 and barx.barc=0 for some non-zero vector x, then the TRUE statement is: a) [bara" "barb" "barc]=0 b) [bara" "barb" "barc] ne0 c) [bara" "barb" "barc] =1 d)None of these

If bara,barb and barc are non-coplanar, then the value of bara.{(barbxxbarc)/(3barb.(barcxxbara))}-barb.{(barcxxbara)/(2barc(baraxxbarb))} is a) -1/2 b) -1/3 c) -1/6 d) 1/6