Home
Class 12
MATHS
If vecu, vecv, vecw are three non-coplan...

If `vecu, vecv, vecw` are three non-coplanar vectors, the `(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)` equals

A

0

B

`baru.(barvxxbarw)`

C

`baru.(barwxxbarv)`

D

`3baru.(barvxxbarw)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbers then the equality [3vecu p vecv p vecw]-[p vecv vecw qvecu]-[2vecw-qvecv qvecu]=0 holds for

If the points P(bara+2barb+barc),Q(2bara+3barb) and R(barb+tbarc) are collinear, where bara,barb,barc are three non-coplanar vectors, then the value of t is...a) -2 b) -1/2 c) 1/2 d) 2

If bara,barb and barc are three non-coplanar vectors, then : (bara + barb + barc) · [(bara + barb) xx (bara + barc)] =

If barp=(barbxxbarc)/(bara" "barb" "barc),barq=(barcxxbara)/(bara" "barb" "barc),barr=(baraxxbarb)/(bara" "barb" "barc) , where bara,barb,barc are three non-coplanar vectors, then the value of (bara+barb+barc).(barp+barq+barr) is given by

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc , then lambda is equal to: a) ([dbc])/([bac]) b) ([bcd])/([bca]) c) ([bdc])/([abc]) d) ([cbd])/([abc])

If bara,barb,barc are three non-coplanar vectors and barp,barq,barr are defined by the relations barp=(barbxxbarc)/([bara" "barb" "barc]),barq=(barcxxbara)/([bara" "barb" "barc]),barr=(baraxxbarb)/([bara" "barb" "barc]) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr=

If bara,barb and barc be three non-zero vectors, no two of which are collinear. If the vectors bara+2barb is collinear with barc and barb+3barc is collinear with bara , then ( lambda being some non-zero scalar) bara+2barb+6barc is equal to: a) lambdabara b) lambdabarb c) lambdabarc d)0

If three particles A, B and C are having velocities vecV_A, vecV_B and vecV_C which of the following formula gives the relative velocity of A with respect to B