Home
Class 12
MATHS
The volumes of the parallelopiped whose ...

The volumes of the parallelopiped whose edges are represented by `bara=2overset(^)i-3overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j+2overset(^)k,barc=2overset(^)i+overset(^)j-overset(^)k` is

A

14 cu. Units

B

16 cu. Units

C

18 cu. Units

D

20 cu. Units

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If bara=3overset(^)i-2overset(^)j+2overset(^)k,barb=6overset(^)i+4overset(^)j-2overset(^)k and barc=3overset(^)i-2overset(^)j-4overset(^)k, then bara(barbxxbarc) is

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If bara=overset(^)i+overset(^)j-2overset(^)k,barb=2overset(^)i-overset(^)j+overset(^)k and barc =3overset(^)i+overset(^)k and barc=mbara+nbarb then m+n

If the volume of parallelopiped whose concurrent edges are 3overset(^)i-overset(^)j+4overset(^)k,2overset(^)i+lambdaoverset(^)j-overset(^)k and -5overset(^)i+2overset(^)j+lambdaoverset(^)k is 110 cu. units, then the value of lambda is: a)3 b)5 c)0 d) 31/3

Three concurrent edges OA,OB,OC of a parallelopiped are represented by three vectors 2overset(^)i+overset(^)j-overset(^)k,overset(^)i+2overset(^)j+3overset(^)k and -3overset(^)i-overset(^)j+overset(^)k the volume of the solid so formed in cubic unit is

A vector perpendicular to 2overset(^)i+overset(^)j+overset(^)k and coplanar with overset(^)i+2overset(^)j+overset(^)k and overset(^)i+overset(^)j+2overset(^)k is

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to