Home
Class 12
MATHS
The volume of a tetrahedron (in cubic un...

The volume of a tetrahedron (in cubic units) whose vertices are `4overset(^)i+5overset(^)j+overset(^)k, -overset(^)j+overset(^)k,3overset(^)i+9overset(^)j+4overset(^)k and -2overset(^)i+4overset(^)j+4overset(^)k` is a)`14/3` b)`5` c)`6` d)`30`

A

`14/3`

B

5

C

6

D

30

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

The volume of the tetrahedron with vertices 5overset(^)i-overset(^)j+overset(^)k,7overset(^)i-4overset(^)j+7overset(^)k,overset(^)i-6overset(^)j+10overset(^)k and -overset(^)i-3overset(^)j+7overset(^)k is...cu.units. a) 7 b) 3 c) 15 d) 11

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

A vector perpendicular to 2overset(^)i+overset(^)j+overset(^)k and coplanar with overset(^)i+2overset(^)j+overset(^)k and overset(^)i+overset(^)j+2overset(^)k is

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to