Home
Class 12
MATHS
Let bara=2overset(^)i+overset(^)j+overse...

Let `bara=2overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k` and a unit vectors `barc` be coplanar. If `barc` is prependicular to`bara`, then `barc=`

A

`(1)/(sqrt2)(-overset(^)j+overset(^)k)`

B

`(1)/(sqrt3)(-overset(^)i-overset(^)j-overset(^)k)`

C

`(1)/(sqrt5)(overset(^)i-2overset(^)j)`

D

`(1)/(sqrt3)(overset(^)i-overset(^)j-overset(^)k)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara=overset(^)i+overset(^)j-2overset(^)k,barb=2overset(^)i-overset(^)j+overset(^)k and barc =3overset(^)i+overset(^)k and barc=mbara+nbarb then m+n

If bar(OA)=overset(^)i+3overset(^)j-2overset(^)k and bar(OB)=3overset(^)i+overset(^)j-2overset(^)k, then the vectors bar(OC) which bisects angleAOB is equal to

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to