Home
Class 12
MATHS
The three vectors 10overset(^)i+13overse...

The three vectors `10overset(^)i+13overset(^)j+16overset(^)k,30overset(^)i+33overset(^)j+36overset(^)k and 47overset(^)i+50overset(^)j+53 overset(^)k` are: a)Collinear b)Coplanar c)Non-coplanar d)Mutually perpendicular

A

Collinear

B

Coplanar

C

Non-coplanar

D

Mutually perpendicular

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

The vectors overset(^)i+2overset(^)j+3overset(^)k,lambdaoverset(^)i+4overset(^)j+7overset(^)k and -3overset(^)i-2overset(^)j-5overset(^)k are collinear, if lambda equals

If the vectors 4overset(^)i+11overset(^)J+moverset(^)k,7overset(^)i+2overset(^)j+6overset(^)k and overset(^)i+5overset(^)j+4overset(^)k are coplanar, then m is equal to

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If the vectors overset(^)i+3overset(^)j-2overset(^)k,2overset(^)i-overset(^)j+4k and 3overset(^)i+2overset(^)j+xoverset(^)k are coplanar, then the value of x is

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If the vectors 2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k are coplanar, then the value of lambda is

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]