Home
Class 12
MATHS
If the volume of parallelopiped whose co...

If the volume of parallelopiped whose concurrent edges are `3overset(^)i-overset(^)j+4overset(^)k,2overset(^)i+lambdaoverset(^)j-overset(^)k and -5overset(^)i+2overset(^)j+lambdaoverset(^)k` is 110 cu. units, then the value of `lambda` is: a)3 b)5 c)0 d)`31/3`

A

3

B

5

C

0

D

`31/3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 2overset(^)i+2overset(^)j+6overset(^)k,2overset(^)i+lambdaoverset(^)j+6overset(^)k,2overset(^)i-3overset(^)j+overset(^)k are coplanar, then the value of lambda is

The volumes of the parallelopiped whose edges are represented by bara=2overset(^)i-3overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j+2overset(^)k,barc=2overset(^)i+overset(^)j-overset(^)k is

If the volume of parallelopiped with coterminus edges -poverset(^)i+5k,overset(^)i-overset(^)j+qoverset(^)k and 3overset(^)i-5overset(^)j is 8 then

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If the vectors overset(^)i+3overset(^)j-2overset(^)k,2overset(^)i-overset(^)j+4k and 3overset(^)i+2overset(^)j+xoverset(^)k are coplanar, then the value of x is

If bara=3overset(^)i-2overset(^)j+2overset(^)k,barb=6overset(^)i+4overset(^)j-2overset(^)k and barc=3overset(^)i-2overset(^)j-4overset(^)k, then bara(barbxxbarc) is