Home
Class 12
MATHS
A(bara)=3overset(^)i+2overset(^)j,B(barb...

`A(bara)=3overset(^)i+2overset(^)j,B(barb)=5overset(^)i+3overset(^)j+2overset(^)k,C(barc)=-9overset(^)i+6overset(^)j-3overset(^)k`
are vectors of triangle ABC, if AD is the angle bisector of angle BAC,
then the co-ordinates of the point D are

A

(a) `(-(19)/(8),(57)/(16),(17)/(16))`

B

(b) `(19/8,57/16,17/16)`

C

(c) `(19/8,57/16,17/16)`

D

(d) `(19/8,57/16,17/16)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+overset(^)j-4overset(^)k,barc=-overset(^)i+2overset(^)j-overset(^)k, then [bara barb barc]=

If bara=overset(^)i-overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and barc=3overset(^)i+poverset(^)j+5overset(^)k are coplanar then the value of p will be

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

If bara=3overset(^)i-2overset(^)j+2overset(^)k,barb=6overset(^)i+4overset(^)j-2overset(^)k and barc=3overset(^)i-2overset(^)j-4overset(^)k, then bara(barbxxbarc) is

If the vectors bara=overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i-overset(^)j-2overset(^)k and barc=xoverset(^)i+(x-2)overset(^)j-overset(^)k are coplanar, then x=

If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overset(^)k,overset(^)i+overset(^)j-coverset(^)k are coplanar, then abc+2 is equal to

If bara=2overset(^)i+overset(^)j-overset(^)k,barb=overset(^)i+2overset(^)j+overset(^)k and barc=overset(^)i-overset(^)j+2overset(^)k, then bara.(barbxxbarc)=

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If bar(OA)=overset(^)i+3overset(^)j-2overset(^)k and bar(OB)=3overset(^)i+overset(^)j-2overset(^)k, then the vectors bar(OC) which bisects angleAOB is equal to