Home
Class 12
MATHS
If the direction cosines of two lines ar...

If the direction cosines of two lines are `(1)/(sqrt(6)),(-1)/(sqrt(6)),(2)/(sqrt(6))and(2)/(sqrt(6)),(1)/(sqrt(6)),(-1)/(sqrt(6))` respectively, then the acute angle between them is: a)`cos^(-1)((-1)/(6))` b)`cos^(-1)((1)/(6))` c)`cos^(-1)((-1)/(sqrt(6)))` d)`cos^(-1)((1)/(sqrt(6)))`

A

`cos^(-1)((-1)/(6))`

B

`cos^(-1)((1)/(6))`

C

`cos^(-1)((-1)/(sqrt(6)))`

D

`cos^(-1)((1)/(sqrt(6)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

(tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1/2)) =

If P-=(1,2,3) and O is origin, then direction cosines of OP are: a) 1,2,3 b) -1,-2,-3 c) (1)/(sqrt(14)),(2)/(sqrt(14)),(3)/(sqrt(14)) d) (-1)/(sqrt(14)),(2)/(sqrt(14)),(3)/(sqrt(14))

If the direction ratios of a line are proportional to 1,-3,2 then its direction cosines are: a) (1)/(sqrt(14)),(-3)/(sqrt(14)),(2)/(sqrt(14)) b) (1)/(sqrt(14)),(3)/(sqrt(14)),(2)/(sqrt(14)) c) (-1)/(sqrt(14)),(3)/(sqrt(14)),(-2)/(sqrt(14)) d) (-1)/(sqrt(14)),(-3)/(sqrt(14)),(-2)/(sqrt(14))

Simplify: sqrt(216)-5sqrt(6)+sqrt(294)-3/(sqrt(6))

Rationalize the denominator of (1)/(sqrt(6)) .'

The angle made by the vector 3hati-4hatj+5hatk with the Z-axis is...a) (pi)/(4) b) cos^(-1)((1)/(sqrt(2))) c) 0 d) cos^(-1)((3)/(5sqrt(2)))

Simplify: sqrt(216)-5sqrt(6)+sqrt(294)-3/sqrt(6)

The direction cosines of AB if A-=(2,-3,1)and B-=(14,5,-3) are: a) (3)/(sqrt(14)),(2)/(sqrt(14)),(1)/(sqrt(14)) b) (3)/(sqrt(14)),-(2)/(sqrt(14)),-(1)/(sqrt(14)) c) -(3)/(sqrt(14)),-(1)/(sqrt(14)),(2)/(sqrt(14)) d) (3)/(sqrt(14)),(2)/(sqrt(14)),-(1)/(sqrt(14))