Home
Class 12
MATHS
The direction ratios of a line perpendic...

The direction ratios of a line perpendicular to lines whose direction ratios are `2,1,-3and1,-2,1` are: a)`-5,-5,-5` b)`(5)/(sqrt(3)),(5)/(sqrt(3)),(5)/(sqrt(3))`
c)`-(1)/(sqrt(3)),-(1)/(sqrt(3)),-(1)/(sqrt(3))` d)`-(1)/(3),-(1)/(3),-(1)/(3)`

A

`-5,-5,-5`

B

`(5)/(sqrt(3)),(5)/(sqrt(3)),(5)/(sqrt(3))`

C

`-(1)/(sqrt(3)),-(1)/(sqrt(3)),-(1)/(sqrt(3))`

D

`-(1)/(3),-(1)/(3),-(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The direction cosines of a line which is perpendicular to both the lines whose direction ratios are 1,-1,0 and 2,-1,1 are: a) -1,-1,1 b) (-1)/(sqrt(3)),(-1)/(sqrt(3)),(1)/(sqrt(3)) c) 1,-1,-1 d) (1)/(sqrt(3)),(-1)/(sqrt(3)),(-1)/(sqrt(3))

Find the direction cosines of the line which is perpendicular to the lines with direction ratios 4, 1, 3 and 2, -3, 1 . a) (1)/(sqrt(3)),(1)/(5sqrt(3)),(-7)/(5sqrt(3)) b) (5)/(sqrt(3)),(1)/(sqrt(3)),(7)/(5) c) (2)/(sqrt(3)),(5)/(2sqrt(3)),(1)/(7sqrt(3)) d) (1)/(sqrt(3)),(2)/(sqrt(3)),(-1)/(sqrt(3))

Find the direction cosines of a vector vecr which is equally inclined with OX,OY and OZ where O is origin. a) 1,1,1 b) -(4)/(sqrt(3)),-(4)/(sqrt(3)),-(4)/(sqrt(3)) c) pm((1)/(sqrt(3)),(1)/(sqrt(3)),(1)/(sqrt(3))) d) -(1)/(sqrt(2)),-(1)/(sqrt(2)),-(1)/(sqrt(2))

If the direction ratios of a line are proportional to 1,-3,2 then its direction cosines are: a) (1)/(sqrt(14)),(-3)/(sqrt(14)),(2)/(sqrt(14)) b) (1)/(sqrt(14)),(3)/(sqrt(14)),(2)/(sqrt(14)) c) (-1)/(sqrt(14)),(3)/(sqrt(14)),(-2)/(sqrt(14)) d) (-1)/(sqrt(14)),(-3)/(sqrt(14)),(-2)/(sqrt(14))

If P-=(1,2,3) and O is origin, then direction cosines of OP are: a) 1,2,3 b) -1,-2,-3 c) (1)/(sqrt(14)),(2)/(sqrt(14)),(3)/(sqrt(14)) d) (-1)/(sqrt(14)),(2)/(sqrt(14)),(3)/(sqrt(14))

The direction cosines of AB if A-=(2,-3,1)and B-=(14,5,-3) are: a) (3)/(sqrt(14)),(2)/(sqrt(14)),(1)/(sqrt(14)) b) (3)/(sqrt(14)),-(2)/(sqrt(14)),-(1)/(sqrt(14)) c) -(3)/(sqrt(14)),-(1)/(sqrt(14)),(2)/(sqrt(14)) d) (3)/(sqrt(14)),(2)/(sqrt(14)),-(1)/(sqrt(14))

Simplify: 5sqrt(3)+2sqrt(27)+1/(sqrt(3))

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to