Home
Class 12
MATHS
Find the angle between the lines whose d...

Find the angle between the lines whose direction cosines are given by
the equations `3l + m + 5n = 0` and `6mn - 2nl + 5lm = 0` (a) `cos^(-1)((1)/(sqrt(6)))` (b) `cos^(-1)((-1)/(6))` (c) `cos^(-1)((2)/(sqrt(6)))` (d) `cos^(-1)((-2)/(sqrt(6)))`

A

(a) `cos^(-1)((1)/(sqrt(6)))`

B

(b) `cos^(-1)((-1)/(6))`

C

(c) `cos^(-1)((2)/(sqrt(6)))`

D

(d) `cos^(-1)((-2)/(sqrt(6)))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

Find the angle between the lines whose direction ratios are: 2,-3,4 and 1,2,1 . a) 0 b) pi/6 c) pi/3 d) pi/2

If direction ratios of two lines are 5,-12,13 and -3,4,5 , then the angle between them is a) cos^(-1)((1)/(65)) b) cos^(-1)((2)/(65)) c) cos^(-1)((3)/(65)) d) (pi)/(2)

Find the angle between the following pair of lines: A line with direction ratios 2,2,1 and line joning (3,1,4) and (7,2,12) points. a) cos^(-1)((2)/(3)) b) sin^(-1)((2)/(3)) c) tan^(-1)((2)/(3)) d) cos^(-1)((1)/(3))

(tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1/2)) =

If the direction cosines of two lines are (1)/(sqrt(6)),(-1)/(sqrt(6)),(2)/(sqrt(6))and(2)/(sqrt(6)),(1)/(sqrt(6)),(-1)/(sqrt(6)) respectively, then the acute angle between them is: a) cos^(-1)((-1)/(6)) b) cos^(-1)((1)/(6)) c) cos^(-1)((-1)/(sqrt(6))) d) cos^(-1)((1)/(sqrt(6)))

The acute angle between the lines whose direction ratios are 1, 1, 2 and sqrt(3)-1, -sqrt(3)-1,4 is: a) 30^(@) b) 45^(@) c) 60^(@) d) 90^(@)

Prove that : tan[cos^(-1)""((4)/(5))+tan^(-1)""((2)/(3))]=(17)/(6)