Home
Class 12
MATHS
A circle x ^(2) + y^(2) + 2gx + 2fy + c=...

A circle `x ^(2) + y^(2) + 2gx + 2fy + c=0` passing through`(4,-2) ` is concentric to the circle `x ^(2) + y ^(2) -2x + 4y + 20 =0,` then the value of c will be: a)-4 b)4 c)0 d)1

A

-4

B

4

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the straigth line y=mx+c touches the circle x^2+y^2-4y=0 ,then the value of c will be

The circle x ^(2) + y^(2) +4x -4y+4=0 touches

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

IF the tangent at (1,7) to the curve x ^(2) = y-6 touches the circle x^(2) + y^(2) + 16x + 12 y + c=0, then the value of c is

A common tangent to the circle x^2 +y^2=4 and (x-3)^2+y^2=1 is

If y+c=0 is a tangent to the circle x^2+y^2-6x-2y+1=0 at (a,4) then

If the radius of the circel x ^(2) + y ^(2) + 2gx+ 2fy +c=0 be r, then it will touch both the axes, if