Home
Class 12
MATHS
The function f(x) =x^2 is increasing in ...

The function f(x) =`x^2` is increasing in the interval: a)(-1,1) b)`(-infty,infty)`
c)`(0,infty)` d)`(-infty,0)`

A

(-1,1)

B

`(-infty,infty)`

C

`(0,infty)`

D

`(-infty,0)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

the function f(x)=logx/x is increasing in the interval

The function f(x)=2x^3+9x^2+12x+20 is increasing in the interval

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]

The function (x-2)/(x+1),(xne0) is increasing on the interval

The function f(x)=1/(1+x^2) is decreasing in the interval (i) (-infty,-1) (ii) (-infty,0) (iii) (1,infty) (iv) (0,infty)

The function f(x)= [x(x-2)]^2 is increasing in the set a) (-infty,0) cup (2,infty) b) (-infty,1) c) (0,1)cup(2,infty) d) ( 1 , 2 )

The function f(x)=x^3-3x^2-24x+5 is an increasing function in the interval a) (-infty,-2) cup (4,infty) b) (-2,infty) c) (-2,4) d) (-infty,4)

The function sinx-bx+c will be increasing in the interval (-infty,infty) , if

The value of x for which the function given by f(x)=2x^3-3x^2-12x+12 is increasing lies in: a) (-infty,-1)cup(2,infty) b) (-infty,-4)cup(2,infty) c) (-infty,0)cup(2,infty) d) (-infty,-2)cup(2,infty)

The function f(x) = x^(3) - 6x^(2) +9x + 3 is decreasing for: a) (-infty,-1)cup(3,infty) b) (1,3) c) (3,infty) d) (1,4)