Home
Class 12
MATHS
The function f(x)=ax+b is strictly decre...

The function `f(x)=ax+b` is strictly decreasing for all `x epsilon R` if:
a)`a=0` b)`altb`
c)`agt0` d)None of these

A

a=0

B

`altb`

C

`agt0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=ax+b is strictly increasing for all real x is a) agt0 b) alt0 c) a=0 d) ale0

The function f(x)=1-e^(-x^2/2) is: a)decreasing for all x b)increasing for all x c)decreasing for x lt0 and increasing for xgt0 d)Increasing for x lt0 and decreasing for xgt0

If f(x)=(a sin x+b cosx)/(c sinx+dcosx) is decreasing for all x , then

Test weather the function f(x)= x^3 + 6 x^2 +12x-5 is increasing or decreasing for all x in R.

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]

The function f(x)=x/(1+|x|) is differentiable in: a) x in R b) x=0 only c) xlt0 d) xgt0

The function f(x)=2-3x is: a)increasing b)decreasing c)neither decreasing nor increasing d)None of these

If a<0, the function f(x)=e^(ax)+e^(-ax) is a monotonically decreasing function for values of x given by