Home
Class 12
MATHS
The function f(x)=2x^3+9x^2+12x+20 is in...

The function `f(x)=2x^3+9x^2+12x+20` is increasing in the interval

A

(a) `(-infty,-1)`

B

(b) `(2,infty)`

C

(c) `(-infty,-2)cup(-1,infty)`

D

(d) `(-2,infty)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]

The function f(x) = x^2 is increasing in the interval: a)(-1,1) b) (-infty,infty) c) (0,infty) d) (-infty,0)

The function f(x)= [x(x-2)]^2 is increasing in the set

The function f(x)=x^3-3x^2-24x+5 is an increasing function in the interval a) (-infty,-2) cup (4,infty) b) (-2,infty) c) (-2,4) d) (-infty,4)

If f(x) = x- sqrt x is increasing in the interval..

Test weather the function f(x)= x^3 + 6 x^2 +12x-5 is increasing or decreasing for all x in R.

If f(x)= kx^3-9x^2+9x+3 is increasing on R then

The function (x-2)/(x+1),(xne0) is increasing on the interval

the function f(x)=logx/x is increasing in the interval