Home
Class 12
MATHS
The function f(x) = x^(3) - 6x^(2) +9x +...

The function `f(x) = x^(3) - 6x^(2) +9x + 3` is decreasing for:
a)`(-infty,-1)cup(3,infty)` b)`(1,3)` c)`(3,infty)` d)`(1,4)`

A

`(-infty,-1)cup(3,infty)`

B

(1,3)

C

`(3,infty)`

D

(1,4)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^3-3x^2-24x+5 is an increasing function in the interval a) (-infty,-2) cup (4,infty) b) (-2,infty) c) (-2,4) d) (-infty,4)

The function f(x)= [x(x-2)]^2 is increasing in the set a) (-infty,0) cup (2,infty) b) (-infty,1) c) (0,1)cup(2,infty) d) ( 1 , 2 )

The value of x for which the function given by f(x)=2x^3-3x^2-12x+12 is increasing lies in: a) (-infty,-1)cup(2,infty) b) (-infty,-4)cup(2,infty) c) (-infty,0)cup(2,infty) d) (-infty,-2)cup(2,infty)

IF f(x)=1-x^3-x^5 is decreasing for

The function f(x)=1/(1+x^2) is decreasing in the interval (i) (-infty,-1) (ii) (-infty,0) (iii) (1,infty) (iv) (0,infty)

For which interval the given function f(x)=2x^3-9x^2+12x+1 is decreasing? a) (-2,infty) b) (-2,1) c) (-infty,-1) d) (1,2)

The function f(x) = x^2 is increasing in the interval: a)(-1,1) b) (-infty,infty) c) (0,infty) d) (-infty,0)

Let f (x) = x^3 -6 x^2 +9x +18, then f(x) is strictly decreasing in- A) (- infty ,1) B) (3, infty ) C) (- infty ,1]U[3, infty ) D) (1, 3)

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]