Home
Class 12
MATHS
2x^(3) - 6x + 5 is an increasing functio...

`2x^(3) - 6x + 5` is an increasing function, if: a)`0ltxlt1` b)`-1ltxlt1`
c)`xlt-1` or `xgt1` d)`-1ltxlt-1/2`

A

`0ltxlt1`

B

`-1ltxlt1`

C

`xlt-1`or`xgt1`

D

`-1ltxlt-1/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

y=x(x-3)^2 increases for all values of x lying in the interval: a) 0ltxlt3/2 b) 0ltxltinfty c) -inftyltxlt0 d) 1ltxlt3

For Which value of x, the function f(x)=x^2-2x is decreasing? a) xgt1 b) xlt2 c) xlt1 d) xgt2

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]

The function f(x) = x^(3) - 6x^(2) +9x + 3 is decreasing for: a) (-infty,-1)cup(3,infty) b) (1,3) c) (3,infty) d) (1,4)

The function f(x) = x^2 is increasing in the interval: a)(-1,1) b) (-infty,infty) c) (0,infty) d) (-infty,0)

The function f(x)=1-e^(-x^2/2) is: a)decreasing for all x b)increasing for all x c)decreasing for x lt0 and increasing for xgt0 d)Increasing for x lt0 and decreasing for xgt0

The function f(x)=x/(1+|x|) is differentiable in: a) x in R b) x=0 only c) xlt0 d) xgt0

Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x 2 (c) x >3 (d) 1ltxlt2

The function f(x)= [x(x-2)]^2 is increasing in the set a) (-infty,0) cup (2,infty) b) (-infty,1) c) (0,1)cup(2,infty) d) ( 1 , 2 )

The area enclosed between the curves y=x and y=2x-x^(2) (in square units), is: a) 1/2 b) 1/6 c) 1/3 d) 1/4