Home
Class 12
MATHS
The function f(x)=2x^3-3x^2-12x+5 has a ...

The function `f(x)=2x^3-3x^2-12x+5` has a minimum at x=...a)`-1` b)`2` c)`-1/2` d)`3/2`

A

-1

B

2

C

`-1/2`

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Function f(x) = 2 x^3 -3 x^2 -12x +2 has minimum at the point…………

The function f(x)=2x^3-15 x^2+36 x+4 is maximum at x= (a) 3 (b) 0 (c) 4 (d) 2

The function f(x)=2x^3+9x^2+12x+20 is increasing in the interval

The function f(x)=2x^(3)-3x^(2)-12x-4 has: a)No maxima and minima b)One maxima and one minima c)Two maxima d)Two minima

The function x^(5)-5x^(4)+ 5x^(3) -10 has a maxima, when x= a)3 b)2 c)1 d)0

The value of a for which the function f(x)=asinx+(1/3)sin3x has an extremum at x=pi/3 is (a)1 (b) -1 (c) 0 (d) 2

For which interval the given function f(x)=2x^3-9x^2+12x+1 is decreasing? a) (-2,infty) b) (-2,1) c) (-infty,-1) d) (1,2)

The minimum value of function f(x)=3x^4-8x^3+12x^2-48x+25 on [0,3] is equal to...a) 25 b) -39 c) -25 d) 39

Function f(x) = x^2 -3x+4 has minimum value at..... A) x= 0 B) x= -3/2 C) x= 1 D) x= 3/2