Home
Class 12
MATHS
If the curves y= a^(x) and y=e^(x) inte...

If the curves `y= a^(x) and y=e^(x)` intersect at angle `alpha, " then " tan alpha` equals: a)`|(loga-1)/(loga+1)|` b)`|(loga+1)/(loga-1)|` c)`|(loga-1)/(loga)|` d)`|(loga)/(loga+1)|`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

The area bounded by the curves y = |x| - 1 and y = -|x| +1 is equal to

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

Select and write the correct answer from the given alternatives in each of the following: |(log_a (b),1),(1,log_b(a))|

The plane 2x-3y+6z-11=0 makes an angle sin^(-1)(alpha) with X-axis. The value of alpha is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

If the curvs a x^2 + b y^2 = 1 and a' x^2 + b' y^2 =1 intersect orthogonally, then prove that frac{1}{a} - frac{1}{b} = frac{1}{a'} - frac{1}{b'}

If (1+tanalpha)(1+tan4alpha)=2,alpha in (0,pi/(16)), then alpha is equal to

If tanalpha=(1+2^(-x))^(-1) , tanbeta=(1+2^(x+1))^(-1) , then alpha+beta equals