Home
Class 12
MATHS
From mean value theoren : f(b)-f(a)=(b...

From mean value theoren : `f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b` if `f(x)=1/x` , then `x_1` is equal to

A

`sqrt(ab)`

B

`(a+b)/2`

C

`(2ab)/(a+b)`

D

`(b-a)/(b+a)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

If f(x) = 1/(1-x) , then f(f(f(x))) is equal to

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

Let f(x)=tan^-1 x. Then, f'(x)+f''(x) = 0, when x is equal to

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 and f(x)=x(x-1)(x-2) the value of c is

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(x) = log [(1+x)/(1-x)] then f [(2x)/(1+x^2)] is equal to