Home
Class 12
MATHS
In the Mean Value theorem (f(b)-f(a))/(b...

In the Mean Value theorem `(f(b)-f(a))/(b-a)=f'(c)`
if ` a=0 , b =1/2 ` and f(x)=x(x-1)(x-2) the value of c is

A

(a) `1-sqrt15/6`

B

(b) `1+sqrt15`

C

(c) `1-sqrt21/6`

D

(d) `1+sqrt21`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is (A)8.00 (B)5.25 (C)4.00 (D)6.25

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

If f'(x)=x^2+5 and f(0)=-1 then f(x)=

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

The value of c in (0,2) satisfying the Mean Value theorem for the function f(x)=x(x-1)^(2), x epsilon[0,2] is equal to