Home
Class 12
MATHS
The function f(x)=(lambdasinx+2cosx)/(si...

The function `f(x)=(lambdasinx+2cosx)/(sinx+cosx)` is increasing, if

A

(a) `lambda<1`

B

(b) `lambda>1`

C

(c) `lambda<2`

D

(d) `lambda>2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

int(dx)/(sinx+cosx)=

If f(x)=(a sin x+b cosx)/(c sinx+dcosx) is decreasing for all x , then

int(sinx)/(sinx-cosx)dx=

The function f(x) = x- cosx , is increasing in....... A) ( pi /2, pi ) B) (0, pi ) C) (0, pi /2) D) All of these

int e^x sin x(sinx + 2cosx)dx =

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(2-sinx)/(2+cosx)dx=

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx