Home
Class 12
MATHS
One maximum point of sin^pxcos^qx is a)x...

One maximum point of `sin^pxcos^qx` is a)`x=tan^-1sqrt(p//q)` b)`x=tan^-1sqrt(q//p)` c)`x=tan^-1(p//q)` d)`x=tan^-1(q//p)`

A

`x=tan^-1sqrt(p//q)`

B

`x=tan^-1sqrt(q//p)`

C

`x=tan^-1(p//q)`

D

`x=tan^-1(q//p)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the curves y=sin x and y = cos x, 0 lt x lt (x)/(2) , is a) tan^-1(2sqrt2) b) tan^-1(3sqrt2) c) tan^-1(3sqrt3) d) tan^-1(5sqrt2)

d/(dx) [tan^(-1)(sqrt(x))] =

d/dx(tan^-1(x/sqrt(a^2-x^2))=

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

int tan^(-1) sqrt x dx=.............a)x tan^(-1) sqrt x - sqrt x + tan^(-1) sqrt x + c b)x tan^(-1) sqrt x + sqrt x - tan^(-1) sqrt x + c c)- x tan^(-1) sqrt x - sqrt x + tan^(-1) sqrt x + c d)x tan^(-1) sqrt x + sqrt x + tan^(-1) sqrt x + c

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is

If tan^(-1)x = sin^(-1)(3/sqrt(10)) , then: x=

DIfferential coefficient of tan^-1(x/(1+sqrt(1-x^2)))w.r.t sin^-1x is

int frac{ t^2 + 1}{ t^4 + 1} dt=...........a) frac{1}{sqrt2}[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c b) sqrt2[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c c) frac{1}{2sqrt2}[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c d) 2sqrt2[tan^(-1)(sqrt 2t-1)+tan^(-1)(sqrt 2t+1)]+c

int frac{1}{cos x sqrt (sin^2 x - cos^2 x)} dx=............ A) log(tan x - sqrt ( tan^2 x - 1 )) + c B) sin^(-1) ( tan x) + c C) 1+ sin^(-1)(cot x) + c (D) log(tan x + sqrt (tan^2 x - 1)) + c