Home
Class 12
MATHS
In the Mean value theorem f(b)-f(a)=(b...

In the Mean value theorem
`f(b)-f(a)=(b-a)f'(c),` if a=4, b=9
and f(x)=`sqrtx`, then the value of c is (A)8.00 (B)5.25 (C)4.00 (D)6.25

A

`8.00`

B

5.25

C

`4.00`

D

6.25

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 and f(x)=x(x-1)(x-2) the value of c is

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

Verify Lagrange's mean value theorem for the following functions: f(x) = sqrt (x+4) on the interval (0,5)

If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2) , then the value of f((pi)/(6)) , is

The value of c in Lagrange's mean value theorem for the function f(x)=log_ex in the interval [1,3] is