Home
Class 12
MATHS
f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , w...

`f(x)=(x)/(sinx ) and g(x)=(x)/(tanx)` , where ` 0 lt x le 1 ` then in the interval

A

both f(x) and g(x) are increasing function

B

both f(x) and g(x) are decreasing function

C

f(x) is an increasing function

D

g(x) is an increasing function

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) =x ^(2) -6x + 9, 0 le x le 4, then f(3) =

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

If f(x)=x " and " g(x)=sinx , then intf(x)*g(x)dx=

If f(x) = {{:(-x, " when "x lt 0),(x^(2), " when "0 le x le 1),(x^(3) -x+1, " when " x gt 1):} then f is differentiable at

Solve the following: f(x) = -x for -2 le x = 2x for 0 le x le 2, = frac{18-x}{4} for 2 g(x) = 6-3x, 0 le x = frac{2x-4}{3} , 2 le x Let u(x)= f[g(x)], v(x)=g[f(x)] and w(x)=g[g(x)] Find each derivative at x=1, if it exists, i.e., find the u'(1), v'(1) and w'(1). If it doesn't exist, then explain why?