Home
Class 12
MATHS
y=x(x-3)^2 increases for all values of x...

`y=x(x-3)^2` increases for all values of x lying in the interval:
a)`0ltxlt3/2` b)`0ltxltinfty` c)`-inftyltxlt0` d)`1ltxlt3`

A

`0ltxlt3/2`

B

`0ltxltinfty`

C

`-inftyltxlt0`

D

`1ltxlt3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = x^2 is increasing in the interval: a)(-1,1) b) (-infty,infty) c) (0,infty) d) (-infty,0)

The function (x-2)/(x+1),(xne0) is increasing on the interval

2x^(3) - 6x + 5 is an increasing function, if: a) 0ltxlt1 b) -1ltxlt1 c) xlt-1 or xgt1 d) -1ltxlt-1/2

If (2-i)x+(1-3i)y+2 = 0 , the the values of x and y are respectively are

The maximum and minimum values of x^3-18x^2+96x in interval (0,9) are

The function f(x)=1-e^(-x^2/2) is: a)decreasing for all x b)increasing for all x c)decreasing for x lt0 and increasing for xgt0 d)Increasing for x lt0 and decreasing for xgt0

If sin5x+sin3x+sinx=0 ,then the value of x other than 0 lying between 0<=x<=pi/2 is

The function f(x)=ax+b is strictly increasing for all real x is a) agt0 b) alt0 c) a=0 d) ale0

If the function f(x)=x^(3)-6x^(2)+ax+b satisfies Rolle's theorem in the interval [1,3] and f'((2sqrt(3)+1)/(sqrt(3)))=0 , then