Home
Class 12
MATHS
Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xin...

Let `f(x)=x^2+(1/x^2)` and `g(x)=x-1/x` `xinR-{-1,0,1}`. If `h(x)=(f(x)/g(x))` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

A

`-3`

B

`-2sqrt2`

C

`2sqrt2`

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = x^(2) -2x + 3, then the value of x for which f (x) = f(x +1) is

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If f(x) = frac {x^2 -1}{x^2 +1} , for every real x, then the minimum value of f(x) is.

Find the approximate value of f(x) = sqrt (x^2 + 3x) at x=1.02