Home
Class 12
MATHS
Let f,g and h be real-valued functions d...

Let `f,g` and `h` be real-valued functions defined on the interval `[0,1]` by `f(x)=e^(x^2)+e^(-x^2)` , `g(x)=x e^(x^2)+e^(-x^2)` and `h(x)=x^2 e^(x^2)+e^(-x^2)`. if `a,b` and `c` denote respectively, the absolute maximum of `f,g` and `h` on `[0,1]` then

A

a=b and `c ne b`

B

a=c and `ane b`

C

`aneb` and `cneb`

D

a=b=c

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f defined by f(x)=(x+2)e^(-x) is

int_(0)^(pi//2) e^(x^(2))/(e^(x^(2)+ e^((pi/2-x)^(2))))dx=

If g(x) = x^2+x-2 and 1/2g(f(x)) = 2x^2 -5x+2 , then f(x) is

int1/((e^(2x)+e^(-2x))^(2))dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

The function f :R to R defined by f (x) = e ^(x) is