Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

(a) local maximum at `pi` and `1pi`

B

(b) local minimum at `pi` and `2pi`

C

(c) local minimum at `pi` and maximum at `2pi`

D

(d) local maximum at `pi` and minimum at `2pi`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=

If f(x)=int_(0)^(x)sin^(6)tdt, then f(x+pi)=

int_(0)^(pi)x sin xdx=

Ifg(x)= int_(0)^(x) cos 4t dt, "then " g (x+pi) equals

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

The function L(x)=int_(1)^(x)(dt)/t satisfies the equation

If kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt , then the value of k is

Evaluate: \int_{0}^1 t^2 sqrt (1-t) dt