Home
Class 12
MATHS
Let p(x) be a real polynomial of least d...

Let `p(x)` be a real polynomial of least degree which has a local maximum at `x=1` and a local minimum at `x=3.` If `p(1)=6a n dp(3)=2,` then `p^(prime)(0)` is_____

A

8

B

9

C

3

D

6

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The local maximum of y=x^3-3x^2+5 is attained at

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. IF lim_(xto0) [1+(f(x))/x^2]=3 , then f(2) is equal to

If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=p and x=q , respectively, then (p , q)-=

Find the local maxima local minima of the function f(x) = x^3 -3x^2 - 24 x +5

In a binomial distribution,n=4.If 2P(X=3)=3,P(X=2)then p=……….

In a binomial distribution,n=4.If 2P(X=3)=3P(X=2)then p=……….

If p(x)=2x^2-x^3+x+2 then p(0) .

the total number of local maxima and local minima of the function f(x) = {((2+x)^3; -3 (x^3; -1 < x < 2 ) is