Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot`
A normal to `y=f(x)` at `x=pi/6` also passes through the point:

A

(a) `(0,(2pi)/3)`

B

(b) `(pi/6,0)`

C

(c) `(pi/4,0)`

D

(d) `(0,0)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

int_(0)^(pi//2)e^(x)((1+sinx)/(1+cosx))dx=?

Prove the following: sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

int_(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2)x)dx is

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) at x=0

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is