Home
Class 12
MATHS
The greatest value of the function f(x)=...

The greatest value of the function `f(x)=tan^(- 1)x-1/2logx`
in `[1/(sqrt(3)),sqrt(3)]` is

A

(a) `pi/6+1/4log3`

B

(b) `pi/6-1/4log3`

C

(c) `pi/3-1/4log3`

D

(d) `pi/3-1/2log3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function y = f (x)=(1)/(log _(10) (1-x))+sqrt(x +2) is

The domain of the function f (x) =sin ^(-1) (x-3)/sqrt(9 - x ^(2)) is

Range of the function f (x)= sqrt(x ^(2) + x +1) is equal to

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

Domain of the function (sqrt(1+x)-sqrt(1-x))/(x ) is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))