Home
Class 12
MATHS
The minimum value of f(x)=sin^4x+cos^4x,...

The minimum value of `f(x)=sin^4x+cos^4x`,`0lexlepi/2` is

A

(a) `1/(2sqrt2)`

B

(b) `1/4`

C

(c) `-1/2`

D

(d) `1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of function f(x)=3x^4-8x^3+12x^2-48x+25 on [0,3] is equal to...a) 25 b) -39 c) -25 d) 39

The function f(x)=sin^4x +cos ^4 x increases if

int(sin^4x-cos^4x) dx =

Evaluate: int sin 4x cos 3x dx

Find the maximum and minimum values of the function f (x) = cos^2 x + sin x.

Verify whether f(x)=sin x for 0lexlepi/2 is pdf of r.v.X.

The maximum and minimum values for the funtion f(x)= 3x^4-4x^3 on [-1,2] are

int (sin2x)/(sin^4x+cos^4x) dx

Verify which of the following is p.d.f of r.v.X : (i)f(x)=sin x, for 0lexlepi/2