Home
Class 12
MATHS
underset(0)overset(1)int e^(2logx)dx=...

`underset(0)overset(1)int e^(2logx)dx=`

A

`0`

B

`1/2`

C

`1/3`

D

`1/4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int x^3logx dx =

underset(0)overset(pi//2)int (d theta)/(1+tantheta)=

underset(1)overset(sqrt(3))int (1)/(1+x^(2))dx=

If (1)/(sqrt(a))underset(1)overset(a)int((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then 'a' may take values :

int(logx)/(x^3)dx=

int(logx)/(x^3)dx=

If I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx ,then

The value of cot[underset(n=1)overset(100)Sigmacot^(-1)(1+underset(k=1)overset(n)Sigma2k)] is

If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2) , then the value of f((pi)/(6)) , is

To find the numberical value of overset(2)underset(-2)int (px^(3)+qx+s)dx it is necessary to know the values of the constants: