Home
Class 12
MATHS
int(pi//6)^(pi//4)cosec 2x dx=...

`int_(pi//6)^(pi//4)cosec 2x dx=`

A

`log3`

B

`logsqrt(3)`

C

`log9`

D

`1/2logsqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

Evaluate: \int_(pi/4)^(pi/2) cot^2 x dx

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(-pi/4)^(pi/4)(dx)/(1+cos2x) is

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then

int_(0)^(pi//4)x sec^(2)x " " dx =

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

Evaluate the following definite integrals: \int_{(pi)/6}^((pi)/3) sin^2 x dx