Home
Class 12
MATHS
int(0)^(1)(tan^(-1)x)/(1+x^(2))dx=...

`int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx=`

A

(a) `pi`

B

(b) `2pi`

C

(c) `3pi`

D

(d) `0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int(e^(tan^(-1)x))/(1+x^2)dx

int(e^(tan^-1x))/(1+x^2)dx =

int_(0)^(1)cos^(-1)x dx=

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to