Home
Class 12
MATHS
The value of int(0)^(-pi//4)(1+tanx)/(1-...

The value of `int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx` is

A

`-1/2log2`

B

`1/4log2`

C

`1/3log2`

D

`(-1)/3log2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int((1+tanx)/(1-tanx))dx

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

int_(0)^(pi)(x tanx)/(sec x +tan x)dx

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

The value of int_(0)^(pi//2)log((4+3sinx)/(4+3cosx))dx is

The value of int_(0)^(1)x|x-1/2|dx is