Home
Class 12
MATHS
int(0)^(1)(1)/(e^(x)+e^(-x))dx=...

`int_(0)^(1)(1)/(e^(x)+e^(-x))dx=`

A

`tan^(-1)(1-e)/(1+e)`

B

`tan^(-1)((e-1)/(e+1))`

C

`(pi)/4`

D

`tan^(-1)e+(pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int(e^(x)(1+x))/(sin (xe^(x)))dx

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to